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Blind Quality Assessment of Camera Images Based
on Low-Level and High-Level Statistical Features
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Abstract—Camera images in reality are easily affected by
various distortions, such as blur, noise, blockiness, and the like,
which damage the quality of images. The complexity of distortions
in camera images raises significant challenge for precisely
predicting their perceptual quality. In this paper, we present an
image quality assessment (IQA) approach that aims to solve this
challenging problem to some extent. In the proposed method, we
first extract the low-level and high-level statistical features, which
can capture the quality degradations effectively. On the one hand,
the first kind of statistical features are extracted from the locally
mean subtracted and contrast normalized coefficients, which
denote the low-level features in the early human vision. On the
other hand, the recently proposed brain theory and neuroscience,
especially the free-energy principle, reveal that the human brain
tries to explain its encountered visual scenes through an inner
creative model, with which the brain can produce the projection
for the image. Then, the quality of perceptions can be reflected
by the divergence between the image and its brain projection.
Based on this, we extract the second type of features from
the brain perception mechanism, which represent the high-level
features. The low-level and high-level statistical features can play a
complementary role in quality prediction. After feature extraction,
we design a neural network to integrate all the features and convert
them to the final quality score. Extensive tests performed on two
real camera image datasets prove the validity of our method and its
advantageous predicting ability over the competitive IQA models.

Index Terms—Image quality assessment (IQA), no-reference
(NR)/blind, neural network, free-energy principle, natural image
statistics.
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I. INTRODUCTION

W ITH the development of image processing applications,
there has been an increasing need in developing ob-

jective image quality assessment (IQA) approaches which can
accurately evaluate the perceptual quality of the image. Ac-
cording to the accessibility of an original or distortion-free im-
age, existing objective IQA methods can be categorized into
full-reference (FR) [1]–[3], reduced-reference (RR) [4]–[6] and
no-reference (NR) [7]–[9] approaches. In brief, FR methods
evaluate the image quality by fully referring to the reference
image, RR methods referring to the reference image partially
for IQA and NR methods perform quality evaluation without
any information of the reference image. NR IQA is also called
blind IQA (BIQA).

Till now, the most influential FR method is PSNR, which is
pervasively adopted in the image processing systems due to its
simplicity and effectiveness. However, PSNR is also found in-
valid under some conditions, such as the distorted images with
similar PSNRs can exhibit different subjective quality [1]. In
this regard, Wang et al. presented the famous SSIM from a new
philosophy which says the human visual system (HVS) tends to
extract the structures from the vision so that gauging the struc-
tural variation can well predict the image quality degradation.
Following this philosophy, some SSIM variants methods were
proposed successively and further improved the prediction ac-
curacy of SSIM, e.g., information content weighting-SSIM (IW-
SSIM) [10], multi-scale SSIM (MS-SSIM) [11] and structural
similarity weighting-SSIM (SW-SSIM) [12], etc. From different
perspectives, some other FR approaches were also proposed and
reveal state-of-the-art performance for quality evaluation. The
visual information fidelity (VIF) method was proposed from the
perspective of information theory [2]. Zhang et al. employed
two low-level features in developing a feature similarity index
(FSIM) [13]. A fast reliable image quality predictor by fus-
ing micro-and macro-structures was introduced in [14]. Sparse
representation was employed to extract features for quality eval-
uation in [15]. Visual saliency was also introduced into the IQA
algorithm design [3], [16]–[18].

Although FR methods produce the best prediction perfor-
mance, the condition of FR methods is also rigorous as the
original image of the distorted image should be known, which
is unpractical in real applications. Therefore, RR IQA was pro-
posed that eases the FR IQA conditions. In RR IQA, partial in-
formation is utilized to infer the distorted image quality, which
indicates the reference image itself is not required such that the
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data rate can be reduced greatly. Some classical RR IQA ap-
proaches have been proposed in the past decade. In [19], a RR
IQA approach was proposed by modeling the wavelet transform
coefficients with the generalized Gaussian distribution (GGD)
and the distribution parameters were utilized to measure the im-
age quality. Rehman et al in [20] designed the RR algorithm
by differentiating the structural and nonstructural feature varia-
tions in the DNT domain. Zhai et al. introduced the free-energy
principle into IQA design and proposed the RR metric called
FEDM [4]. In [21], [22], Liu et al. employed sparse representa-
tion and further improved the predicting ability of FEDM.

Compared with FR and RR IQA metrics, NR IQA methods
are expected to predict the image quality without referring to
the original image, which makes NR IQA the most challenging
task for IQA researchers. Existing NR IQA methods can be
classified into two types, which are distortion-specific and
general-purpose methods. Distortion-specific methods mainly
deal with one or several particular kinds of distortions. In [23],
Li et al. proposed a blind image blur evaluation approach based
on discrete Tchebichef moments, in which the shape changes
of the blurred images are well captured by discrete orthogonal
moments for blurriness estimation. Zoran et al. proposed an
image noise level estimation method as the noisy image violates
the scale invariance principle [24]. In [25], Li et al. proposed a
new quality model for DIBR-synthesized view images, in which
a disoccluded region detection method is first proposed using
SIFT-flow-based warping and the global sharpness estimation is
conducted through a reblurring-based strategy. At last, the over-
all quality score is derived by pooling the scores of disoccluded
regions and global sharpness. A no-reference quality measure
was proposed for the compressive sensing recovered images,
which extracts the local and global features to characterize the
quality degradations. The local features are derived to describe
the sharpness and texture variations. The global features are
extracted from the statistics of the MSCN and SVD coefficients.
Support Vector Regression (SVR) is utilized to regress the
features to the final quality [26]. Other distortion-specific
works also cover methods that handle blur [27], [28], [29], [30],
ringing artifacts [31], JPEG compression [32], etc. Compared
with distortion-specific methods, general-purpose NR methods
are developed to evaluate the image quality without assuming
the distortion types in advance. In [33], Moorthy et al. presented
BIQI, which has a two-step framework. In the first step, Natural
scene statistics (NSS) features were extracted and applied
to classify the distorted image to one of some predefined
distortions. In the second step, the same set of features were
utilized again to evaluate the image quality. Later, BIQI was
extended to DIIVINE by introducing richer NSS features [9].
While BRISQUE [8] and BLIINDS-II [34] operated in only
one successive step, namely extracted features and then utilized
them to predict the image quality. The difference between
BRISQUE and BLIINDS-II lies in that BRISQUE extracted
the NSS features in the spatial domain and the NSS features
of BLIINDS-II come from the DCT domain of the distorted
image. In [7], Gu et al. proposed NFERM, whose features
were designed from three aspects, which are free-energy
principle, structural degradation model and image naturalness

measurement. In summary, all the above models conduct in a
similar way which contains a training stage and a testing stage.
In the training stage, quality-aware features are extracted from
a set of impaired images. In the next, a quality module that
maps the features onto the assigned subjective scores is learned.
In the testing stage, given a distorted image, the same features
are extracted and input into the learned regression module to
gain a quality score. Since the assigned subjective scores are
involved in these methods, they are also called “opinion-aware”
methods. On the contrary, the “opinion-unaware” methods
don’t need subjective scores for calibrating the quality model.
In [35], Mittal et al. extracted features from an image and
fitted them with a multivariate Gaussian model (MVG), then
the quality of the distorted image was derived by the MVG
difference from the fitted MVG. Zhang et al. extended this
method to IL-NIQE by introducing more statistical features,
i.e., gradients, colors and Log-gabor filter responses [36].

Although the above mentioned IQA methods have already
been verified to work effectively on the well-known image
databases, such as LIVE [37], CSIQ [38], TID [39], etc.
While to the real photographs or camera images, they may be-
come ineffective even failed on this occasion. The main reason
maybe lies in that the distorted images in the popular databases
are rather ideal, i.e., the distortion is always artificially gen-
erated and the distortion types are also limited. While in real
camera images, the distortions are much more complicated and
harder to model. Therefore, there remains high research poten-
tial in developing new IQA algorithms for the camera images.
Toward this end, in this work, we design an effective blind ap-
proach for the camera images from two concerns, which are the
low-level human vision characteristics and the high-level brain
activities. Specifically, on the one hand, we compute the locally
normalized luminance coefficients and their products along four
orientations based on the observation that these statistics will
be altered at the presence of distortion. Therefore, these statis-
tics serve as the low-level statistical features in our algorithm.
On the other hand, the brain theory, especially the free-energy
principle, manifests the brain intends to explain the encountered
scenes through an inner generative model and actively generate
corresponding projections for the scenes. Then the quality of
perceptions can be measured by how well the brain explains the
image, i.e., the agreement between the image itself and its pro-
jection in the brain, which inspires us to employ this agreement
or discrepancy to extract the corresponding high-level statistical
features. With the extracted low-level and high-level features,
we design a neural network to combine all the features and
map them to the image quality. Experimental results demon-
strate the low-level and high-level statistical features can play
complementary role in computing the quality of camera im-
ages. Additionally, by testing our method on two camera image
databases, we verify its effectiveness in quality estimation and
superiority over the mainstream IQA approaches.

We organize the rest of this paper as follows: In Section II,
the detailed principle of the proposed method for camera image
quality evaluation is presented. In Section III, we present the
experimental results and deliver necessary analysis. We sum-
marize this paper in Section IV.
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Fig. 1. Histograms of the normalized coefficients (NC) of an original image with its corresponding distorted images. (a) The distortion-free image. (b) The NC
histograms of the images with gaussian blur. (c) The NC histograms of the images with JPEG2000.

II. PROPOSED METHOD

A. Low-Level Statistical Features

The first concern in our method is that natural images without
distortions will show regularity in statistics, such as the coeffi-
cients in the transform domain. While such NSS regularity will
be destroyed because of the introduced distortions, which makes
the image “unnatural”. This claim has been widely adopted in
the design of NR IQA algorithms [8], [34], [35]. Rather than
exploring the NSS regularity in the transform domain, in this
paper, we extract NSS features in the spatial domain of the
image. Specifically, we compute the locally normalized coeffi-
cients by subtracting the local mean and then dividing the local
standard deviation, which is adopted in [8], [35]. Such operation
can de-correlate the image signals effectively and remove their
redundant information, which conforms to the behaviors in the
early human vision [8]. Given an image I , its locally normalized
coefficients I ′ can be calculated as

I ′(x, y) =
I(x, y) − μ(x, y)

σ(x, y) + 1
(1)

with I(x, y) and I ′(x, y) denoting the original and normalized
luminance values at position (x, y). μ(x, y) and σ(x, y) stands
for the mean and standard deviation of a local patch centered at
(x, y), which are respectively calculated by:

μ(x, y) =
S∑

s=−S

T∑

t=−T

ωs,tI(x + s, y + t) (2)

σ(x, y)=

√∑S

s=−S

∑T

t=−T
ωs,t [I(x + s, y + t) − μ(x, y)]2

(3)

where ω = {ωs,t | s = −S, . . . , S; t = −T, . . . , T} denotes
a 2D circularly-symmetric Gaussian weighting filter. In Fig. 1,
we show an example of the calculated normalized coefficient
distributions of an original image with its corresponding dis-
torted versions from CSIQ database [38]. In this figure, (a)
refers to the original image, (b) shows the coefficients distribu-
tion comparison between the original image and its Gaussian

blurred images. Similarly, (c) gives the distribution comparison
between the original image and the corresponding JPEG2000-
compressed images. By observing this figure, we can find that
no matter Gaussian blur or jp2k compression, the original co-
efficients distribution are changed to sharper than the original
distribution which implies more values become zero as a result.
This is due to blur or jp2k eases the structures in the original
image and makes it smoother. Therefore, we can conclude that
the introduced distortion changes the empirical distribution of
the normalized coefficients as the distributions of the distorted
images are deviated from that of the original image. In addi-
tion, more severe distortion will cause greater changes to the
distribution of the coefficients, which can be found from the
observation that the distribution of the heavily distorted image
deviates more from the original image than the slightly distorted
image. To extract effective NSS features from the normalized
coefficient distribution for quality estimation, researchers usu-
ally fit the distribution with the zero-mean generalized Gaussian
distribution (GGD), then the GGD parameters are estimated and
serve as the quality-aware features. While the fitting process and
parameter estimation will inevitably introduce error in feature
extraction. Instead, here we extract features directly from the co-
efficients distribution. Specifically, take another look at Fig. 1(b)
and (c), we find the distribution variation of the original image
and distorted images mainly concentrate among the interval of
[−2, 2] at the horizontal axis. Therefore, we directly cut out the
part of the histogram of [−2, 2] as our features. Specifically,
we divide (−2, 2] into 20 bins at the step of 0.2 and utilize
the number of elements in each bin resulting in a vector of
20 elements.

Furthermore, as stated in [8] and [35], the distribution of the
products of pairs of adjacent normalized coefficients can also be
disturbed because of the distortion. Here we calculate the adja-
cent products along four directions, which are vertical, horizon-
tal, main-diagonal and second-diagonal, namely the products of
I ′(x, y)I ′(x + 1, y), I ′(x, y)I ′(x, y + 1), I ′(x, y)I ′(x + 1, y +
1) and I ′(x, y)I ′(x + 1, y − 1) respectively. Then we have four
distributions of the four kinds of products. Like feature extrac-
tion of the normalized coefficients, we also take part of the
histogram of these four distributions and get four 20-dimension
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vectors. By considering the color information in quality eval-
uation, we perform NSS feature extraction in R, G, B chan-
nels respectively. Then the features in these three channels are
concatenated into the final feature vector, which serves as the
low-level NSS feature vector for quality evaluation.

B. Free-Energy Principle-Induced High-Level
Statistical Features

Besides concerning the early human vision characteristics
for quality evaluation, the high-level brain activities for visual
perception should also be taken into consideration. Consider-
ing this, our second category of features for quality estimation
are derived from the free-energy principle, which attempts to
account for the human brain activities when exposed to the out-
side world [40], [41]. A basic precondition of the free-energy
principle lies in that the human perception is controlled by an
generative model in brain, with which the human brain can ac-
tively produce the prediction of the visual scenes while avoid
the uncertainty maximally in the meantime. In practice, the
brain generative model that manipulates visual perception is of-
ten modeled as parametric which can explain the outside world
through adjusting its parameters, denoted by M. For conve-
nience, we utilize m as the vector which is composed of the
parameters in M. Then, the ’surprise’ of an input image I can
be calculated by integrating the joint distribution P (I,m) over
the parameter space of m:

− log P (I) = − log
∫

P (I,m)dm (4)

we introduce an assistant item P̃ (m|I) into the right component
of the above equation while still maintain the equivalence as:

− log P (I) = − log
∫

P̃ (m|I)
P (I,m)

P̃ (m|I)
dm (5)

here P̃ (m|I) can be thought of as the posterior distribution
of image I , which is the approximate posterior distribution to
the true posterior distribution P (m|I) when exposed to I . For
explaining I , the human brain tries to reduce the divergence
between the approximate P̃ (m|I) and the true P (m|I) as much
as possible. Based on Jensen’s inequality, the above equation can
be written as:

− log P (I) ≤ −
∫

P̃ (m|I) log
P (I,m)

P̃ (m|I)
dm (6)

On the basis of statistical physics and thermodynamics [42],
we define the right part of the above equation as “free energy”,
namely:

F (m) = −
∫

P̃ (m|I) log
P (I,m)

P̃ (m|I)
dm (7)

Obviously, F (m) denotes an upper bound of I’s ‘sur-
prise’. We can explain this through further derivation. As

P (I,m) = P (m|I)P (I), equation (7) can be rewritten as:

F (m) =
∫

P̃ (m|I) log
P̃ (m|I)

P (m|I)P (I)
dm

= − log P (I) +
∫

P̃ (m|I) log
P̃ (m|I)
P (m|I)

dm

= − log P (I) + KL(P̃ (m|I)‖P (m|I)) (8)

where KL(·) denotes the Kullback-Leibler divergence, which
is nonnegative. It is easily found that the free energy of F (m)
is greater than or equal to −logP (I) which accounts for the
‘surprise’. When perceiving image I , the human brain intends
to minimize the divergence of KL(P̃ (m|I)‖P (m|I)).

To apply the free-energy principle in IQA task, we need to
determine the internal model at first. However, the difficulty
is that real configuration of the internal model is beyond our
knowledge [4]. Toward this end, IQA researchers resorted to
existing image models to simulate the internal generative model.
In this paper, we employ the linear auto-regressive (AR) model
to approximate the internal generative model due to its flexibility
to represent natural images, described as:

xn = Sk (xn )c + en (9)

where xn is the pixel in question, Sk (xn ) contains k nearest
neighbor pixels of xn , c = (c1 , c2 , . . . , ck )T represents k coef-
ficients to compute xn , “T” refers to the transpose operation.
en gives the representation error. To calculate the coefficients c,
the following optimization equation is needed to be solved as:

c∗ = argmin
c

‖x − Sc‖2 (10)

where x = (x1 , x2 , . . . , xk )T and S(i, :) = Sk (xi). Obviously,
the solution of this equation is c∗ = (ST S)−1ST x. Here c∗ rep-
resents the parameter vector m of the internal generative model.
Then xn can be represented by Sk (xn )c∗ and the brain predic-
tion of image I can be calculated in this point-wise manner. In
this regard, the posterior distribution P̃ (m|I) is approximated
by all the AR parameters’ distribution. In Fig. 3, we show an ex-
ample of a natural image and the posterior distribution P̃ (m|I)
to illustrate. It can be found that P̃ (m|I) reveals a very sharp
appearance which indicates most values are near zero.

As the free-energy principle conjectures although the brain
tries its best to explain the input image, the divergence between
the image and the brain explanation still exits. This is due to the
generative model in the brain isn’t universal, otherwise nothing
will be surprising or interesting to the brain. Then such diver-
gence should be closely associated with the perception quality,
which thereby can be utilized for quality estimation of the im-
age. Inspired by this, we define the prediction divergence by the
prediction residual R, calculated as:

R = I − Ip (11)

where Ip represents the brain explanation of I , which is obtained
by AR prediction in equation (9). “-” refers to the operation of
element-wise subtraction. To illustrate that the prediction resid-
ual R can characterize the image quality levels, we give an
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Fig. 2. Histograms of the prediction residual Rs of an original image with its corresponding distorted images. (a) The distortion-free image. (b) The histograms
of Rs of the images with gaussian noise. (c) The histograms of Rs of the images with JPEG compression.

Fig. 3. Illustration of the posterior distribution of P̃ (m|I). (a) A natural

image. (b) The corresponding P̃ (m|I) of (a) in terms of AR parameters.

example of R s of an original image and its distorted versions
with different distortion levels in Fig. 2, where (a) is the original
image, (b) shows the histogram comparison of Rs of the original
image and the gaussian noise images, (c) shows the histogram
comparison of Rs of the original image and the JPEG com-
pression images. We investigate two distortion levels which are
slight distortion and heavy distortion. From this figure, we can
see that the Gaussian noise and jpeg compression both make the
original residual distribution smoother with longer tails. This is
because the Gaussian noise and jpeg compression will introduce
more high-frequency components, e.g., the blocking artifacts,
to the original image. Such components are more difficult for
AR representation, which leads to higher prediction residual.
Therefore, the brain prediction residual is able to distinguish
the distortion-free and distorted image. Likewise, different dis-
tortion levels can also be captured by the deviation degree of
the residual distribution as observed in Fig. 2. Based on this, we
can extract quality-aware features accordingly.

Similar as the NSS features extraction, we divide the interval
[−50, 50) into 100 bins at the step of 1 and take the number
of elements falling into each bin leading to a 100-dimension
vector, which stands for the high-level feature vector for quality
calibration. Considering that multi-scale strategy is effective in
objective IQA methods [11], we extract all the features (low-
level NSS features and high-level free-energy-induced features)
in five resolutions respectively. The operations we take are that

Fig. 4. The structure of our neural network for quality evaluation.

we apply a low-pass filter and then down-sample the filtered
image by the factor of 2. These operations are conducted four
times iteratively. At last, the features extracted in each scale are
concatenated into the final feature vector.

C. Neural Network-Based Quality Assessment

As aforementioned, learning-based NR IQA methods usually
learn a regression module which maps the quality-aware fea-
tures to the quality level after feature extraction. In this process,
SVR is mostly employed in the existing algorithms for its con-
venience and effectiveness. While SVR is also proposed that it
can’t approximate the complicated HVS optimally because of
its shallow architecture [43], [44]. Instead, in this work, we de-
sign a neural network to convert the quality-aware features into
the final quality score. Experiments in Section III-F will ver-
ify the designed neural network is more effective than SVR in
quality prediction. We show the structure of our neural network
in Fig. 4. It can be observed that the designed neural network
includes three hidden layers and one linear regression layer. The
hidden layers attempt to dig potential data information closely
related to visual quality of the image. As the image quality
score is represented by a continuous value, we adopt the linear
regression layer to regress the output of the last hidden layer to
the final image quality score, which represents the image qual-
ity. The bottom input of the neural network is the features we
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extracted, denoted by f1 , f2 , f3 , f4 , . . . , fn (n = 2000) and the
linear regression layer output the quality score of the image.
The sizes of the three hidden layers are 200, 40, 6 respectively.
Specifically, we train our neural network in three steps. The first
step is an unsupervised pre-training, in which each hidden layer
is treated as a sparse auto-encoder. The L-BFGS algorithm [45]
is employed to train each sparse auto-encoder. The maximum
iteration of L-BFGS is 1000. The sigmoid function is applied as
the activation function in the hidden layers. The cost function
for training each hidden layer is:

Jsparse(W, b) = J(W, b) + β

s2∑

j=1

KL(ρ‖ρ̂j ) (12)

where

J(W, b)=
1
m

m∑

j=1

J
(
W, b;x(i) , y(i)

)
+

λ

2

nl −1∑

l=1

sl∑

i=1

sl +1∑

j=1

(
W

(l)
j i

)2

=
1
m

m∑

j=1

1
2
‖hW,b(x(i)) − y(i)‖2 +

λ

2

nl −1∑

l=1

sl∑

i=1

sl +1∑

j=1

(
W

(l)
j i

)2

(13)

and

KL(ρ‖ρ̂j ) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
(14)

where W is the network weight, b refers to the hidden layer bias,
hW,b(·) represents the output of each nerve cell in the hidden
layer. ρ and ρ̂j represent the mean activation and expected mean
activation respectively. In this work, ρ is set to be 0.1, β is set
to be 3, λ refers to the weight decay parameter, which is set to
be 0.0001. After training each sparse auto-encoder, the linear
regression layer is trained through the cost function as:

J(W, b) =
1
m

m∑

i=1

1
2
(Y − Label)2 +

λ

2

∑
W 2

i (15)

where Y means the output of the regression layer and Label
denotes the subjective quality scores of the training images,
which stand for the ground truth as our training goals. At last,
we fine tune the whole network, the weights are initialized with
the pre-trained values. Now the trained network can be utilized
for quality estimation.

III. EXPERIMENTAL RESULTS

A. Prediction Performance Evaluation Indexes

In our experiments, to evaluate the performance of the objec-
tive IQA approaches, we employ four statistical indexes, which
are to compute the correlation between subjective ratings and
objective scores given by the IQA methods. They are Spearman
Rank order Correlation coefficient (SRCC), Kendall’s rank cor-
relation coefficient (KRCC), Pearsons linear correlation coeffi-
cient (PLCC) and root mean square error (RMSE) respectively.
In general, a better objective method is expected to achieve
higher SRCC, KRCC and PLCC values, while lower RMSE
value. Specifically, before calculating PLCC and RMSE, objec-
tive scores given by objective IQA methods are often mapped

to subjective scores by nonlinear regression [46]. Hence, we
employ a logistic function with five parameters for implemen-
tation:

q (z) = β1

(
1
2
− 1

1 + exp (β2 · (z − β3))

)
+ β4 · z + β5

(16)
where z and q(z) are the objective score and the mapped score.
β1 , β2 ...β5 are parameters to be fitted through curve fitting.

B. Testing Image Databases

In this work, two real camera image databases are employed
as the test bed for examining the performance of the proposed
method. The first one is the CID2013 database [47], which
was specifically proposed for evaluating NR IQA algorithms.
The CID2013 database includes 474 naturally-distorted im-
ages captured by 79 different cameras or image signal pro-
cessing pipelines. The included images can be classified into
six sets (I–VI), each set includes six different scenes and every
scene was captured by 12–14 different cameras. The second im-
age database for testing our method is the realistic blur image
database (BID) [48], which includes a total of 586 blurred im-
ages, which were photographed under different exposure time
and lighting situations. The distorted images in BID can be clas-
sified into five blur cases, i.e., Unblurred, Simple motion blur,
Complex motion blur, Out-of-focus blur and their combination.
We give some example images from these two databases in
Fig. 5, where the group of (a) is from CID2013 database and
group of (b) is from BID database.

C. Overall Prediction Performance Comparison

With the two testing image databases, we randomly divide
each database into nine subsets and adopt the nine-fold leave-
one-out cross validation methodology to evaluate the prediction
performance of our approach. Specifically, in each procedure,
eight of the subsets are used for training and the remaining
one subset is for testing. This process repeats nine times. The
average performance evaluated by SRCC, KRCC, PLCC and
RMSE are summarized in Table I and Table II. Table I lists the
performance results on CID2013 database and Table II gives the
performance results on BID database. We highlight the best per-
formed method with boldface. As observed in Table I, we com-
pare our approach with ten representative approaches, which
are BIQI [33], BRISQUE [8], DIIVINE [9], NFERM [7], SIS-
BLIM [49], LPSI [50], NIQE [35], ILNIQE [36], QAC [51],
BIQME [52] and FRIQUEE [53] respectively. It is noted that
all the compared methods belong to NR methods as there are no
original images for the distorted images to reference so that
the FR and RR methods can’t be applied. Furthermore, we
can divide the NR methods into two categories. The one is
the training-based category, which contains BIQI, BRISQUE,
DIIVINE, NFERM and FRIQUEE. The other one category is
training-free, which includes SISBLIM, LPSI, NIQE, ILNIQE,
QAC and BIQME. By observing Table I, we can have two
meaningful findings. First, the methods which perform well on
artificially-generated databases become ineffective or invalid
on the real camera image database, such as BRISQUE, LPSI
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Fig. 5. Example distorted images from CID2013 and BID databases. (a) Images from CID2013 database. (b) Images from BID database.

TABLE I
OVERALL PREDICTION PERFORMANCE COMPARISON ON CID2013 DATABASE

The best performer is in boldface.

and QAC etc. This reveals precise quality assessment for real
camera images or photographs is still very challenging and re-
serves great potential for study. Second, our proposed method
achieves notably better prediction performance than the other
competing methods, which verifies our method can perform
more effectively than the competitors. It is also noted that al-
though FRIQUEE is designed for authentically distorted images,
it still fails to attain desired results for quality prediction.

As to the results on BID database shown in Table II, be-
sides comparing our method with the representative NR mod-
els, we also include the specific blurriness assessment methods
for comparison as the BID database is a realistic blur image
database. Those mainstream blurriness assessment methods are
CPBD [54], ARISMC [55], FISH [56], GPSQ [57], JNB [58],
LPC [59], S3 [60] and BIBLE [23]. From this table, similar
conclusions can be drawn that the general-purpose NR methods
cannot deliver desired results. In addition, although the sharp-
ness methods are specialized for the blurred images, they are
also unable to produce high performance for the real blurred im-

TABLE II
OVERALL PREDICTION PERFORMANCE COMPARISON ON BID DATABASE

The best performer is in boldface.

ages. Among them, GPSQ performs the best since it is designed
for the real blurred images. It is worthy noting that our proposed
method still outperforms all the other methods significantly on
the BID database.

To statistically verify the superiority of our proposed method,
we further inspect the statistical significance of the results given
by IQA models through t-test. The t-test is conducted by com-
puting the prediction residuals between the subjective ratings
and the converted objective scores. We give the experimental
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TABLE III
STATISTICAL SIGNIFICANCE RESULTS (T-TEST)

1, 0, or −1 indicates our approach is statistically superior, indistinguishable, or inferior to the general-purpose NR method (with 95% confidence).

TABLE IV
STATISTICAL SIGNIFICANCE RESULTS (T-TEST)

1, 0, or −1 indicates our method is statistically superior, indistinguishable, or inferior to the sharpness
assessment method (with 95% confidence).

Fig. 6. The distribution diagrams of MOS values with respect to objective values on CID2013 dataset.

TABLE V
PERFORMANCE COMPARISON ON CID2013 DATABASE WHEN TRAINED ON

BID DATABASE

The best performer is in boldface.

results on CID2013 and BID in Table III and Table IV, where 1,
0 and −1 respectively indicates our approach is superior, indis-
tinguishable and inferior to competing approaches statistically

TABLE VI
PERFORMANCE COMPARISON ON BID DATABASE WHEN TRAINED ON

CID2013 DATABASE

The best performer is in boldface.

in each column (with 95% confidence). From these two tables,
we can find that only BIQI on CID2013 database is statistically
indistinguishable from our proposed method. While in other
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TABLE VII
PERFORMANCE COMPARISON ACCORDING TO SRCC, KRCC, PLCC AND RMSE VALUES OF THE TWO GROUPS OF FEATURES

ON CID2013 AND BID DATABASES

We highlight the best performance with boldface.

TABLE VIII
PERFORMANCE COMPARISON ACCORDING TO SRCC, KRCC, PLCC AND RMSE VALUES BETWEEN NEURAL NETWORK AND SVR

We highlight the best performance with boldface.

cases, our method is superior to all of the compared models
statistically.

For visualization, we also provide the distribution diagrams
of subjective MOS values with respect to objective values on
CID2013 database in Fig. 6, in which we denote the distorted
images with blue “+” and the black curves are obtained in the
curve fitting process in (16). One can see the blue “+” of our
method gather evenly and close to the black curve and the curve
also exhibits almost a straight line, which manifest the better
correlation between the scores given by our method and the
subjective judgements for the image quality.

D. Cross-Dataset Performance Comparison

In previous subsection, we compared the performance of the
objective methods in each dataset as we partition each dataset
into training dataset and testing dataset. In this subsection, we
would like to test the prediction performance by cross-dataset
validation, in which we train the objective method on one dataset
and test it on the other dataset. In our compared methods, BIQI,
BRISQUE, DIIVINE, NFERM and FRIQUEE belong to the
learning-based methods, therefore, we compare their perfor-
mance with ours through cross-dataset validation. The perfor-
mance comparison is given in Table V and Table VI. Among
them, Table V lists the performance comparison on CID2013
database with the methods trained on BID database, Table VI
lists the results on BID database with the methods trained on
CID2013 database.

It is observed that the performance of the learning-based
methods all degrade significantly in Table V and Table VI. This
is because the distortions in these two databases are much differ-
ent. Therefore, the quality model trained on one database can’t
cover the distortions of the other database so that the predic-
tion results are likely inaccurate. Such results also reveal the
common disadvantage of the learning-based methods, namely
the generalization capability of the learning-based methods is

TABLE IX
PERFORMANCE OF THE PROPOSED METHOD W.R.T. VARIATIONS OF THE STEP

VALUES IN FEATURE EXTRACTION ON CID2013 DATABASE

relatively weak [36]. As observed in these two tables, our pro-
posed method earns moderate results among the compared meth-
ods. These results once again manifest there remains much study
room for precise and robust quality assessment for the real cam-
era images.

E. Analysis of the Features’ Contribution in Our
Proposed Method

In our proposed method, we design two kinds of statistical
features for characterizing the quality degradations, which are
the low-level NSS features and the free-energy induced high-
level features. We are interested in the contribution of each type
of the features for final quality assessment. Therefore, in this
experiment, we separately use the NSS features, the free-energy
induced features and their combination for quality prediction.
Other configurations in the proposed method are all fixed and
the test methodology is the same as in Section III-C. The ex-
perimental results on CID2013 and BID databases are listed in
Table VII, where we bold the best results. It is observed that on
CID2013 database, the free-energy induced features can be more
effective than the NSS features as the performance of the former
is above the latter. On the contrary, the NSS features can lead
to better prediction performance on the BID database. These
observations are due to that CID2013 database contains compli-
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TABLE X
PERFORMANCE OF THE PROPOSED METHOD W.R.T. VARIATIONS OF THE HIDDEN LAYER SIZE IN NEURAL NETWORK

ON CID2013 DATABASE

cated distorted images, which may induce more thinking or brain
activities for viewers to perform quality assessment. Therefore,
the high-level features from the brain activities play the leading
role in quality determination on the CID2013 database. While
to the BID database, the images are mainly degraded by the
distortion of blur, which makes it much easier for humans to
judge the image quality. Therefore, the humans tend to resort
to more low-level vision characteristics for quality evaluation,
which accounts for the low-level NSS features are more effec-
tive than the high-level features on the BID database. These
experimental results can reflect that our proposed method is
consistent with human perceptions for the image quality. It is
worth noting that the combination of the NSS features and the
free-energy induced features outperforms any one of them on
both databases, which proves that the low-level and high-level
features can work cooperatively in evaluating the image qual-
ity so that the combination of them can boost the final quality
evaluation performance accordingly.

F. Prediction Performance Comparison Between SVR and
Neural Network

To map the quality-aware feature vector onto the final quality
level, we design a neural network to implement this goal. In this
section, we want to compare the proposed neural network with
the traditional SVR for quality prediction through necessary ex-
periments. In experiments, we fed the extracted features into the
neural network and SVR respectively and get the correspond-
ing quality score. We report the testing results on CID2013 and
BID databases with Table VIII, where we highlight the best per-
formance in boldface. From this table, we can clearly see that
all the statistical index values of the designed neural network
are notably better than that of SVR, which proves the superior-
ity of our designed neural network over SVR in approximating
the process of converting the quality-aware features into quality
level in human brain.

G. Sensitivity to Parameter Variations

In this subsection, we discuss about the sensitivity of the
proposed method to the parameter variations. Here, we inves-
tigate the parameters of the step value in the stage of feature
extraction, the approximation method of the internal model
and the sizes of the three hidden layers in the neural network.
In implementation, we set the parameter values empirically,
but the performance of the proposed method is robust to the
parameters within a moderate range. We conducted experiments

on the CID2013 database by varying the parameter values as fol-
lows: the step value in the low-level feature extraction is from
0.1 to 0.5 with the step size being 0.1, the step value in the
high-level feature extraction is from 1 to 5 with the step size
being 1, the approximation method is from AR model to sparse
representation adopted in [21], the size of the first hidden layer
is from 100 to 500 with the step size being 100, the size of the
second hidden layer is from 30 to 70 with the step size being
10, the size of the third hidden layer is from 4 to 8 with the step
size being 1. In our experiments, when we vary one parameter,
we fix other parameters as their default values. The test strategy
is the same as subSection III-C. Here, we denote the step value
in the low-level feature extraction as v1 , the step value in the
high-level feature extraction as v2 , the size of the first hidden
layer as s1 , the size of the second hidden layer as s2 , the size of
the third hidden layer as s3 . The experimental results in terms
of SRCC are reported in Table IX and Table X, respectively.
From Table IX, we observe that the performance of the pro-
posed method changes slightly as the step values vary, which
indicates the proposed method is robust to parameter variations.
Similar conclusion can be drawn from Table X. From these re-
sults, we can conclude the proposed method is insensitive to the
parameter variations within a moderate range.

For approximating the internal model in high-level feature
extraction, we compare the adopted AR model and sparse rep-
resentation model [21], the configuration of sparse representa-
tion follows [21] strictly. The SRCC values of AR and sparse
representation on CID2013 are 0.7830 and 0.8069 respectively,
indicating sparse representation is more effective than AR in
approximating the internal model, which coincides with the re-
sults in [21]. Therefore, we may resort to sparse representation
for simulating the internal model in future work.

IV. CONCLUSION

In this work, a blind image quality evaluator has been intro-
duced which aims to accommodate the camera images in reality.
In the proposed method, we extracted the quality-aware features
from the low-level human vision characteristics and the high-
level brain activities in free-energy principle respectively. On
one hand, the low-level features can well characterize the image
quality degradations. On the other hand, the brain theory, partic-
ularly the free-energy theory reveals that the divergence between
the visual scene and the generation by the brain can denote the
quality of perceptions, which inspires us to design the high-level
quality-aware features. After feature extraction, we designed a
neural network that integrating all the features and converting
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them into the final quality. Through extensive experiments, we
verify that our proposed method can deliver superior prediction
performance over state-of-the-art quality models. What’s more,
the rationalities of the components in the proposed method have
also been proved with reliable experiments.
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